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Topology as a theoretical and data analysis tool for understanding the fundamental 
processes underlying the dynamics of complex systems.

This review article is based on the invited talks given by the two authors in an online series on “Perspectives on climate
sciences: From historical developments to research frontiers”.



Introduction
• What is phase space topology?

Methods
• Branched manifolds, cell complexes, homologies.

Applications
• Lagrangian analysis, Climate dynamics.

Templex
• Why and how was it conceived? How is it computed? 

Random templex
• How is it defined? How does it encode topological tipping points?  

Dynamical Systems, Algebraic Topology, and 
Climate



The first sentence of Leo Tolstoy's novel Anna 
Karenina is: 

"All happy families are alike; each unhappy family is 

unhappy in its own way". 

Following the famous writer, Robert Gilmore and 
Marc Lefranc, tell us:

"All linear systems are alike; each nonlinear system is 

nonlinear in its own way". 

“It was a very happy and shocking discovery that there were structures in 

nonlinear systems that are always the same if you looked at them the right way.”

This talk will show that topology is the right way of looking at 
dynamical systems. 

Introduction

• What is phase space topology and why is it important? 



Introduction

Topological chaos considers the fluid mechanics problem of how fluid particle trajectories are entangled in 
physical space during a mixing experiment. 

It generally relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids. 
This motion generates exponential stretching of material lines, and hence efficient mixing. 

Topological mixing with ghost rods 
Gouillart et al. PRE 73, 036311 (2006) 

• Phase space topology is not topological chaos



Introduction

Phase space topology (also, chaos topology or topology of chaos) considers how n-dimensional trajectories and 
point clouds representing a flow are structured in phase space within Dynamical Systems Theory.

Optically pumped molecular laser run under 
a resonance-operating condition. 

Embedding projection 
onto a plane.

Branched 
manifold. 

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998 

• What is phase space topology and why is it important? 



The first methods to reconstruct dynamic configurations in phase space from experimental time series and to 
study geometric structures in this space appear in 1980.

Introduction

• What is phase space topology and why is it important? 



Geometric methods continue to be used, e.g., to 
understand datasets of Lagrangian trajectories. 

But is geometry the best lens we can use to 
classify data according to underlying differences in 
dynamics?

Introduction

• What is phase space topology and why is it important? 



Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983), 

multifractal scaling functions (Halsey et al., 1986). 

b)  Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985) 

and by Abarbanel et al. (1993). 

c)  Topological: linking numbers, relative rotation rates, Conway polynomials, 

Branched Manifolds (Birman & Williams, 1983). 

Invariants (a) and (b) do not provide information on how to model 

the system’s dynamics, while (c) actually does! 

Introduction

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998

• What is phase space topology and why is it important? 



The “recipe” to 
“knead” the 
Lorenz’63 attractor 
is a sequence of 
steps that are 
topological in 
nature. 

Introduction

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch 
and Squeezeland. Wiley-Interscience, 2002.

Topology is concerned with the properties of a geometric object that are preserved under continuous deformations,
such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, gluing, or passing
through itself. The animated image shows a continuous deformation of a mug into a doughnut: both objects are
topologically equivalent.

• What is phase space topology and why is it important? 



Geometry may differ, but if the underlying dynamics is equivalent, the topology should be the same. 

Introduction

Unveiling the topology <=> Unveiling the dynamics

The advantage of using topology, instead of geometry or fractality, to describe a flow in
phase space lies in the fact that topology provides information about the invariant
mechanisms that act in phase space to shape the flow.

• What is phase space topology and why is it important? 



Dynamical system ODEs Parameters Topologies

Methods

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch and Squeezeland. Wiley-Interscience, 2002.

• A table of elements for different types of dynamical behaviour ?



The concept of branched manifold, introduced by Robert F. Williams in 1974, was anticipated in Edward Lorenz’s
famous 1963 paper: on page 20, he remarks that the trajectory ‘lives’ on a surface and describes the architecture
of the attractor in terms of “isopleths.”

Publ. Math. IHES, v. 43 (1974), p. 169–203

Methods

• Branched manifolds, knot-holders, cell complexes, homologies



Joan Birman & Robert F. Williams used branched manifolds to classify chaotic attractors in terms of the way unstable periodic
orbits are “knotted” in dynamical systems.

The set of unstable periodic orbits (UPOs) of the Lorenz
attractor lie on a “Branched Manifold”, i.e. on a structure
obtained by identifying all the points with the same future
(Birman-Williams projection). This is a 2-manifold almost
everywhere (not where the flow splits or squeezes together).

Methods

Birman & Williams discovered that branched manifolds are a suitable concept to distinguish attractors which are not 
dynamically equivalent.

• Branched manifolds, knot-holders, cell complexes, homologies



In the late ‘90s, it was possible to determine whether two three-dimensional (3-D) dissipative dynamical systems are
equivalent by using knot theory or templates.

Methods

• Branched manifolds, knot-holders, cell complexes, homologies



1) Approximate trajectories by closed curves.

2) Find a topological representation for the orbit structure. 

3) Obtain an algebraic description for the topological structure. 

1) Close-returns method – time series, though, must be long and noise free.

2) Knot theory – knot  orbit in three dimensions.

3) Knot invariants – e.g., linking numbers, Conway polynomials.  

2 3

1 2 3

Knotted 

periodic 

orbits in 

dynamical 

systems. 

Topology: 

Vol.22. No. 

I,pp.47~81. 

1983 

1

Computing topological invariants
using knots…

3D trajectory set Knot invariants 

Methods

J. S. Birman & 
R. F. Williams

• Branched manifolds, knot-holders, cell complexes, homologies



Knot information for a chaotic attractor can be condensed in 
a knot-holder or template.

Definition

The template or knot-holder is a scheme used to assemble a 
set of strips that lodge the knots along the attractor. 

Each strip represents a path followed by the flow. 

A template or knot-holder may require the introduction 
of fictitious boundaries between the different strips.

Typically, a strip is defined between and a joining chart & a 
splitting chart, ended by a joining line, which corresponds to 
a Poincaré section.

Methods

• Branched manifolds, knot-holders, cell complexes, homologies



Methods

What’s wrong with templates? There are several problems. 

Reconstructing Unstable 
Periodic Orbits (UPOs) is not always 
possible.

The template is not necessarily 
topologically faithful to the branched 
manifold.

Templates are limited to 3D 
systems: knots unknot in higher 
dimensions. 

• Branched manifolds, knot-holders, cell complexes, homologies



Methods

1993

1999

2001

• Branched manifolds, knot-holders, cell complexes, homologies



RESTRICTIONS

• Precision and length of time series must be good enough 
for orbits in phase space to be reconstructed accurately … 

• Phase space dimension n cannot be higher than three, 
since knots or braids unknot …

HOMOLOGY GROUPS

• Time series can be shorter and noisy since the method is 
independent of the reconstruction of trajectories in phase 
space (orbitless). 

• Applicable in n > 3 dimensions: the method does not rely on 
knots or braids (knotless and braidless).

Computing topology 
using homologies

3-D trajectory set Knot invariants 

n-D point-cloud Homologies

Computing topology 
using knot theory

Methods

• Branched manifolds, knot-holders, cell complexes, homologies



1) Approximate points as lying on a branched manifold.

2) Find a topological representation for the branched manifold.

3) Obtain an algebraic description of the topological structure. 

1) Local approximation by d-disks => short and noisy time series can be handled.

2) Build a cell complex keeping track of the gluing prescriptions => 3D+ can be handled. 

3) Compute homologies and orientability properties of the cell complex => the structure can be identified.    

HOMOLOGY 
GROUP 
computation

BraMAH 
COMPLEX 
construction

Computing topological invariants
using homologies

n-D point-cloud Homologies

Methods

1

2

• Branched Manifold Analysis through Homologies (BraMAH)



A BraMAH cell complex is a particular type of cell complex, 
constructed to adjust to the topology of a branched 
manifold. Cells approximate sets of points lying on a 
branched manifold.

Methods

One of his hands holds mālā (Sanskrit: माला)  symbolizing 
time. 

Sanskrit: ब्रह्मा, Romanized: Brahmā or Bramāh

Acronym first used in Charó, Artana & Sciamarella, 
Physica D 405 (2020) 132371

Brahmā is a Hindu god, referred to as "the Creator" within the 
Trimurti, the trinity of supreme divinity. He is associated with 
knowledge and creation.

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

A patch is a set of points {xi} around an arbitrary point x0 , that is locally homeomorphic to the interior of a disk 
in d dimensions (d ≤ n)

A patch is a good approximation of a 
hyperplane of dimension d in a space of 
dimension n if the square roots of d among 
the n second moments of {xi} decrease 
linearly with R while (n–d) decrease as lower 
powers of R. 

Xi,j = (xi,j – x 0,j)  

find N1 such that d among n singular 
values of Xi,j vary linearly with N

Point-cloud decomposition 
into patches

Patches are used to construct the 
cells in the cell complex

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

0-cell

2-cell

1-cell

How to determine if two spaces are 
topologically equivalent? 

Cell complex covering the 
cylinder

A k-cell is a set corresponding to the interior of a disk in k
dimensions whose borders are divided into cells of lower 
dimension. 

A cell complex is a set of cells such that their 
borders are elements of the complex with 
interiors that do not intersect. 

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

A k-chain in a complex K is a sum 
C = aii such that i are the k-
cells  with  ai  Z and such that 
Ck(K) = {k-chains of K} has an 
abelian group structure.

A border map is an operation : Ck(K) →Ck-1(K) such that 
(aii)= ai (i)

Oriented 
complexes

Uniformly 
oriented 
complex

Example of a 1-chain: 
<3,7>-<5,7> Example of border map:

(<3,7,4> )=<3,7>-<4,7>-<3,4>

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

1-cycle

1-bord

A k-cycle is a  k-chain C such that (C)=0

Zk(K) = {all k-cycles in a complex}

A k-border is a k-chain C / there exists a (k+1)-chain D
such tat (D)=C

Bk(K) = {all k-borders of an n-complex}

Equivalence relationship:

Two  k-chains C1 and C2 are called homologically equivalent (C1  C2) if 
there exists a (k+1)-chain D such that (D)=C1-C2

Example:  -<3,4> + <3,7>  - <1,4> + <1,2> + <2,5> + <5,7>

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

Example: the cylinder

H0(K1)=[[<1>]]  Z1  one connected component

H1(K1)=[[<1,3>+<3,4>-<1,4>]]  Z1  one nontrivial loop

H2(K1)=   0  no cavities enclosed

K1

Homology groups

The n+1 homology groups of an n-complex K are the sets: 

Hk(K) = Zk/Bk ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

Example: the torus

H0(K2) =[[<1>]] Z1  one connected component

H1(K2)   Z2  two nontrivial loops

H2(K2)  Z1 one cavity enclosed

Homology groups

The n+1 homology groups of an n-complex K are the sets: 

Hk(K) = Zk/Bk ={the homologically independent k-cycles that are not borders of any (k+1)-cell}

K2

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

Example: the Klein bottle

H0(K3) =[[<1>]] Z1  one connected component

H1(K3)   Z2 two nontrivial loops

H2(K3)  0  no cavity enclosed

K3

Homology groups

The n+1 homology groups of an n-complex K are the sets: 

Hk(K) = Zk/Bk ={the homologically independent k-cycles that are not borders of any (k+1)-cell}

The Klein bottle has a torsioned 1-cycle that is not 
the boundary of any 2-chain, but that becomes one 
if travelled twice, thus defining a weak boundary.

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

An orientability chain in a uniformly oriented complex K with cells bi is a chain  O= (bi) =  aj tj if there 
exists at least one coefficient j such that |aj|>1. We call torsion chains the consecutive cells tj preceded by 
the same multiple in O.

Example: Möbius strip. 

H0(K4) =[[<1>]] Z1  one connected component

H1(K4)   [[L]] Z1  one nontrivial loop

H2(K4)  0  no cavities enclosed

O(K4) = (bi) = -2 <1,7>

T(K4) ={<1,7>}  one torsion located at <1,7>.

K4

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

3D

4D

• Branched Manifold Analysis through Homologies (BraMAH)



Methods

The concept of persistent homology (PH) emerged independently in Bologna, in Colorado, and within a bio-geometry 
project in North Carolina, towards 2005. 

PH was conceived to solve pattern recognition problems, mainly in scanned images.

The method 
constructs a series of 
cell complexes using 
a rule that depends 
on a distance 
parameter (𝜀 or d). 

The connectivity of 
the point cloud 
increases as 𝜀 or d
grows. 

Zomorodian, A. J. Topology for 

computing (Vol. 16). Cambridge 
University Press.

• Persistent homologies



Methods

• Persistent homologies



Methods

Filtrations: the rules used to build cell complexes as the filtration parameter is varied. The Vietoris-Rips filtration is illustrated in 
the gif below. 

• Persistent homologies

Vietoris-Rips cell complex

- A ball of diameter d is drawn around these 
points.

- Two balls intersect (two points are separated 
by a distance less than d) → connect the two 
points with a segment or 1-cell (simplicial cell of 
dimension 1). 

- The triangles formed are completed by 
forming 2-cells (simplicial cells of dimension 2), 
and so on.

The Vietoris–Rips complex was originally called the Vietoris complex, for Leopold Vietoris, who introduced it as a means of 
extending homology theory from complexes to metric spaces.



Methods

PH is not a Branched Manifold approximation method
but can help counting holes in phase space point-clouds,
serving as a guide.

https://live.ripser.org

𝜀

Fundamental problems with PH

The complexes are constructed in such a way that:

(1) #cells≫ #points in the point-cloud⇒ large point clouds are
not supported.

(2) the complexes are not topologically faithful to the branched manifold.

Constructing the BraMAH complex from a Vietoris-Rips complex is an

interesting open problem in computational topology.

H1

𝜀max

Practical problems with PH

- The number of holes will depend on the choice of 𝜀max which is 
always somewhat arbitrary. 

- Hk generators and cell complexes are generally not provided as 
output. 

• Persistent homologies



“Topological methods can be used to determine whether or not two dynamical systems are

equivalent; in particular, they can determine whether a model developed from time-series

data is an accurate representation of a physical system. Conversely, it can be used to provide

a model for the dynamical mechanisms that generate chaotic data.”

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998 

✓ Validate/refute models – simulations vs. observations.

✓ Comparing models – time series generated by different models.

✓ Comparing datasets – e.g., in situ versus satellite data.

✓ Extracting models from data – using global modeling techniques with a topological validation.

✓ Characterizing and labeling chaotic behaviors – towards a systematic classification.

✓ Classifying sets of time series according to their main dynamical traits – e.g., in Lagrangian Analysis.

Applications

• Topological methods can be harnessed for multiple purposes 



• Lagrangian Analysis

Applications

The Driven Double Gyre (DDG) system is an analytic model, often used to show how much Lagrangian patterns may differ
from patterns in Eulerian fields.

It was introduced by Shadden et al. (2005) to mimic the motion of two adjacent oceanic gyres enclosed by land and,
since Sulalitha Priyankara et al. (2017), it is known to present chaotic transport in some ‘regions’ of the fluid, even if the
Eulerian picture is periodic.

What is Lagrangian analysis? 

In fluid mechanics, two viewpoints are possible. 

In the Eulerian viewpoint, fluid motion is
observed at specific locations in space, as time
passes.

In the Lagrangian viewpoint, the observer follows
individual fluid particles as they move through
the fluid domain.



Applications

Let us consider the kinematic model inspired in a pattern that occurs frequently in geophysical flow. 

From the Eulerian perspective the periodically driven Double-Gyre flow has a periodic and simple behaviour. But what 
about particle behaviour? What happens, for instance, if there is an “oil spill” in the middle of the domain?  

• Lagrangian Analysis



Applications

Let us paint in blue the particles that are continuously passing through the centerpoint (streakline) to “visualize” particle 
behaviour. 

Transport barriers appear, showing 
that the tracer invades some parts of 
the domain leaving some other 
regions blank. 

These non-mixing islands move 
circularly in each half-domain. 

What can topology tell us in a 
problem of this kind? 

Lagrangian time series  (the position or the velocity of a particle) can be generated and studied in state space with our 
topological tools. 

• Lagrangian Analysis



Applications

A BraMAH analysis applied to a collection of 8528 particles (x1 time series) in a time window of 500 units yields five 
topological classes. Computations involve complexes constructed from 4-dimensional time-delay embeddings. 

Torus Klein bottleFive-loop structure Moebius strip Standard strip

5

• Lagrangian Analysis



Applications

Topological colouring of 8528 advected particles in the driven Double-Gyre flow to visualize how topologies are 
organized in physical space.

Assigning a different color to each topological class,
the colors in motion define particle sets that move
together forming coherent regions, i.e., without mixing
with the surrounding fluid.

Let us use the term ‘separator’ to designate the
frontier between differently colored regions.

Such flow separators are associated with ‘Lagrangian
coherent structures’, known to separate dynamically
distinct regions in fluid flows (Kelley, Allshouse &
Ouellette, 2013).

• Lagrangian Analysis



Applications

If the advected particles are coloured according to 
the BraMAH topological analysis, the non-mixing 
islands become apparent.

Classifying topologies (= classifying dynamics) can 
be used: 
i. for an indirect identification of particle sets 

that do not mix with the surrounding fluid; 
ii. to characterize such dynamics within each 

region; 
iii. to compare distant regions behaving 

similarly; and
iv. to compare the behaviour of particles in 

different flows. 

Topological colouring of 8528 advected particles in the driven Double-Gyre flow to visualize how topologies are 
organized in physical space.

• Lagrangian Analysis



Applications

What happens if we introduce a perturbation in the driving force of the Double-Gyre in which the particles in 
the formerly non-mixing islands slowly migrate towards the chaotic sea? 

The topology that is computed is always referred to the time window 
that is chosen for the analysis. A particle that migrates ‘moves’ from 
one topological class to the other. 

• Lagrangian Analysis



Applications

• Climate dynamics

Can homologies distinguish between simulated climate attractors? 

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf



Applications

• Climate dynamics

The time series of the annual averages are, when embedded, indistinguishable from each other, giving rise to point clouds 
distributed in the form of solid spheres or solid tori.  

Solid torus in phase space → When the predominant 
dynamics in the global variability is that of the seasonal 
cycle; see Falasca, F., & Bracco, A. (2022). The seasonal 
cycle will be filtered out.

Solid sphere in phase space → statistical version of a 
fixed point in phase space: transient discarded, the 
system stabilizes around a given point. 



Applications

• Climate dynamics

The dynamical properties of a climate attractor depend on its local and instantaneous properties, rather than its 
average properties [Lucarini et al, 2016]. Time series for the analysis will have a lower time resolution than that used 
in [Brunetti et al, 2019], filtering out the seasonal cycle. 

Evolution of four attractors with sliding time windows of 1000 days (range 5000 days) and daily time resolution.  The time series 
were calculated by Maura Brunetti specifically for Luciana Salvagni’s graduate thesis. 



Applications

• Climate dynamics

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf

To analyze the persistence properties, topological markers can be defined to condense the salient 
features of holes. 

F11: the start (birth) value of the largest 1-
hole

F12: lifetime of the largest 1-hole (reflects the 
size of the geometrically dominant 1-hole)

F13: sum of the half-lives of all 1-holes

F14: averaged lifetime of the 1-holes 
(indicative of the average size of the 1-holes)



Applications

• Climate dynamics Topological markers for the four climatic attractors

Each attractor has a predominant 
trait in terms of persistent 
homologies that distinguishes it 
from the others in time windows 
of one thousand days.

The topological structure of each 
attractor is not yet unveiled: it 
cannot be condensed into a 
single representative cell 
complex. 

Persistence diagrams cannot be 
used, at this stage, to obtain a 
BraMAH complex. 

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf



Templex

“There are more things in Topology and Dynamics, than are dreamt of in Homologies.”



Templex

• Why and how was it conceived? 

Spiral Rössler attractor Funnel Rössler attractor

Homologies cannot distinguish between two different attractors produced by the Rössler
dynamical system with different parameter values (spiral Rössler attractor with a =
0.343295 on the left and the funnel Rössler attractor with a = 0.492 on the right).



The template does distinguish between the two: the spiral Rössler attractor has two strips (0, 1), while the funnel 
Rössler attractor has three strips (0,1,2). 

Templex

• Why and how was it conceived? 

Spiral Rössler 
attractor

Funnel Rössler 
attractor



Templex

• Why and how was it conceived? 

The spiral and funnel Rössler attractors are homologically equivalent: they have both one hole in the centre
(H1 = Z1). 

But there is more information in a cell complex than the one contained in its homology groups… for instance, 
the joining lines! They can be detected as the 1-cells shared by at least three 2-cells (heavy lines). 
Notice that the recipe to scotch the cell complexes is different.



But there is something else that is very important and that is
missing in a cell complex representing a branched manifold.

This is the flow or, in other words, time!

Homologies do not consider the action of the flow on the cell
complex…

In order to take the flow on the complex into account, the cell
complex will be endowed with a directed graph that prescribes
the flow direction between its highest-dimensional cells.

Templex

• Why and how was it conceived? 



T(R)=(K(R),G(R)) T(R3)=(K(R3),G(R3)) 

2 Stripexes in T(R):

3 Stripexes in T(R3):

twistedtwisted

Templex

• Why and how was it conceived? How is it computed? 

Spiral Rössler attractor Funnel Rössler attractor



T(L)=(K(L),G(L)) 

Four stripexes in T(L):

weak 
cycles

The weak cycles that form the two twisted stripexes 
correspond to a single generatex of order 2.

strong
cycles

Templex

• Example I: Lorenz 63 example (autonomous) T’(L)=(K’(L),G’(L))

(with fewer cells) 



Templex

A four-dimensional system designed from a 
three-dimensional system proposed by Deng. 

A solution to this system was already investigated with a BraMAH cell complex (but not with a templex) in 
Sciamarella & Mindlin, 2001. 

• Example II: 4D Deng attractor (autonomous)



Templex

• Example II: 4D Deng attractor (autonomous) Five stripexes in T(4D)=(K(4D),G(4D))



The templex can be seen as dissecting the phase-space structure into 
several identifiable components, connected at certain joints with non-
redundant pathways (stripexes) on it. 

The templex properties: 
- some describe the structure alone (holes, torsions) 
- others describe the flow along the structure (stripex, twists). 

Templex

• Example II: 4D Deng attractor (autonomous)



A reduced templex can be obtained using a set of topological rules. Cells in the BraMAH complex are merged if they do 
not add new information, and the digraph is redrawn in terms of main splitting and joining nodes. 

Templex

• Ongoing work: 

Spiral Rössler 
attractor

Funnel Rössler 
attractor

Lorenz 
attractor

4D Deng 
attractor

The reduction leads to a combinatorial approach. A certain type of dynamics is obtained by assembling fundamental 
dynamical units of two types: O and S. 

Caterina Mosto, Gisela D. Charó, C. Letellier & Denisse Sciamarella, 
Templex-based dynamical units for a taxonomy of chaos, in preparation. 



The simplest AMOC model has 
the same set of stripexes as the 
spiral Rössler attractor. 

Let us now consider an autonomous 3D model of the Atlantic Meridional Overturning Circulation (AMOC) in Sévellec et 
Fedorov (J. Clim., 2014) reproducing the chaotic dynamics of the Quaternary glaciations.

K(AMOC3D) has two 1-
holes

T(AMOC3D) has two 
stripexes, one of which 
is twisted.

Work in progress with C. 
Mosto, G. Charó & J. Ruiz in 
collaboration with F. Sévellec 
(LOPS, Brest). 

T(AMOC3D) = (K(AMOC3D), G(AMOC3D))

Templex

• Example III: 3D AMOC example (autonomous)



Let us consider the imposed temporal changes in the position of the edge of sea ice (ESI) to account for the chaotic behavior
during the glacials and for the stable ocean conditions during the interglacials.. FBT and FNS are the Fourier projections of 
surface salt flux.

Simulated variations in the overturning rate (−Ω) for two slightly different sets of initial conditions (solid black and dashed 
red lines) for a single glacial–interglacial cycle. 

The grey sawtooth line indicates the imposed temporal changes in the position of the edge of sea ice (ESI). 

The four vertical lines indicate the freezing times (t0) used later to compute the Pullback attractor (PBA) [Ghil et al, 2008; 
Chekroun et al, 2011].

Templex

• Example IV: Unstable AMOC (non autonomous)

Work in progress with C. 
Mosto, G. Charó & J. Ruiz in 
collaboration with F. Sévellec 
(LOPS, Brest). 



Templex

• Example IV: Unstable AMOC (non autonomous)

Work in progress with C. 
Mosto, G. Charó & J. Ruiz in 
collaboration with F. Sévellec 
(LOPS, Brest). 



4D solutions: we obtain a cloud of four-dimensional points. We construct the BraMAH complex from this point 
cloud. The four-dimensional point cloud does not have false neighbors: it is related to an autonomous writing of 
the AMOC equations and can be used to build a templex. 

Templex

• Example IV: Unstable AMOC (non autonomous)

Work in progress with C. 
Mosto, G. Charó & J. Ruiz in 
collaboration with F. Sévellec 
(LOPS, Brest). 



K(AMOC4D) has 3-cells 
(basis: solid torus)

Three 1-holes in the 
BraMAH complex

3 stripexes 
(1 twisted)

T(AMOC4D) = (K(AMOC4D), G(AMOC4D))

What is the relationship between the PBA approach and the 4D Templex structure?

Templex

twisted

• Example IV: Unstable AMOC (non autonomous)

Work in progress with C. 
Mosto, G. Charó & J. Ruiz in 
collaboration with F. Sévellec 
(LOPS, Brest). 



The templex can be considered as a single static object of higher dimension, combining all the « parts » of the 
structure observed in the snapshot sequence in a PBA approach as a fonction of (t0,t). 

Working in higher dimensions may provide an alternative to working with the PBA approach. 

Templex

• Example IV: Unstable AMOC (non autonomous)

Work in progress with C. 
Mosto, G. Charó & J. Ruiz in 
collaboration with F. Sévellec 
(LOPS, Brest). 



Templex

• Example IV: Unstable AMOC (non autonomous) with interglacial phase 

Two 1-holes in the BraMAH 
complex: one of the 1-holes of the 
glacial phase is now covered by the 
orange/yellow/green phases.

A fourth stripex 
appears, going 
through the 
interglacial part 
of the templex. 

The change of 
colors in the time 
series are related 
to the stripexes 
being visited.  

Work in progress with C. 
Mosto, G. Charó & J. Ruiz in 
collaboration with F. Sévellec 
(LOPS, Brest). 



Templex

• Computing templex from data

Developing an algorithm to compute 
the templex from an embedded time 
series. 

Defense: February 27th, 2024



Random Templex

The templex was originally defined to describe the flow on 
a static branched manifold in phase space.  

[Chekroun et al, 2011] showed that adding multiplicative 
noise can cause the structure in phase space to move. 

The starting point is now a moving point cloud…

• How is it defined? 

Computing topological invariants
for random attractors

moving 
n-D point-cloud 

Random 
templex



Random Templex

We now have cell complex per snapshot and homologies do not necessarily stay the same all the time. In the sequence 
below we show three snapshots, each with a different number of holes.

• How is it defined? 

G. D. Charó, M. Ghil and D. Sciamarella: Random templex encodes topological tipping points in noise-driven chaotic dynamics. Chaos: An 
Interdisciplinary Journal of Nonlinear Science, 33 (10), pp.103141 (2023)



Random Templex

How can we track changes between different cell complexes? Tracking holes! 

• How is it defined? 

For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes. 



Random Templex

A random 2-templex R = (K, D) is an indexed family K 
of BraMAH 2-complexes and a digraph D. 

The digraph for LORA can be presented as a tree 

plot. It has 15 singly connected components, each of 

which tells the story of one or several holes. 

Tipping points can be identified and classified using the 
digraph. They are highlighted in different colours 

according to the type of event: 

- creation
- destruction
- splitting
- merging
- merging → splitting

• How is it defined? 



Random Templex

A constellation C is the set of immersed nodes and 
edges forming a connected component in the 
digraph D of a random templex. 

Constellations should lead to the equivalent of a 
stripex in a random templex, i.e. to non-equivalent 
paths that a nonlinear system follows when it is 
driven by multiplicative noise. 

Random stripexes should provide us with the 
stretching, folding, squeezing and tearing 
mechanisms that knead the topological structure 
of a noise-driven flow. 

A better picture of how the holes are evolving in the system’s phase space can be gained by using the coordinates of the 
barycenters of the holes for an immersion of D into this space. Each node is immersed in the phase space using the 
coordinates of the corresponding hole’s barycenter. 

• How does it encode topological tipping points? 



Concluding remarks

There is no relationship between the algebraic structure of the equations 
governing a dynamic system and the type of flows they produce. 

The mechanisms that shape a flow are topological in nature and are found in the 
full phase space. 

***

Classical algebraic topology describes how a structure is built, but it says nothing 
about the flow associated with the dynamical system. 

A templex is a new mathematical concept describing both structure and flow, as 
well as how these fundamental properties may change abruptly, i.e. the 
associated topological tipping points. 

***

The templex approach provides the right way to look at dynamical systems, 
whether deterministic or stochastic.

The approach is currently under development in its theoretical, computational 
and applied contexts. 
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