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Topology as a theoretical and data analysis tool for understanding the fundamental
processes underlying the dynamics of complex systems.
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Dynamical Systems, Algebraic Topology, and
Climate
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Introduction
* Whatis phase space topology?
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Methods
* Branched manifolds, cell complexes, homologies.

Applications
* Lagrangian analysis, Climate dynamics.

Templex
* Why and how was it conceived? How is it computed?

Random templex
« Howis it defined? How does it encode topological tipping points?
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Introduction

 What is phase space topology and why is it important?

. [UNIVERSITA

The first sentence of Leo Tolstoy's novel Anna
Karenina is:

"All happy families are alike; each unhappy family is
unhappy in its own way".

Robert Gilmore and Marc Lefranc WWILEY-VCH
P

Following the famous writer, Robert Gilmore and
Marc Lefranc, tell us:

The Topology
of Chaos

"All linear systems are alike; each nonlinear system is ik it Seeertond
nonlinear in its own way".

“It was a very happy and shocking discovery that there were structures in

nonlinear systems that are always the same if you looked at them the right way.”

This talk will show that topology is the right way of looking at
dynamical systems.
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Introduction

* Phase space topology is not topological chaos

. |UNIVERSITA

Topological chaos considers the fluid mechanics problem of how fluid particle trajectories are entangled in
physical space during a mixing experiment.

; N

Topological mixing with ghost rods
Gouillart et al. PRE 73, 036311 (2006)

It generally relies on the periodic motion of obstacles in a two-dimensional flow in order to form nontrivial braids.
This motion generates exponential stretching of material lines, and hence efficient mixing.

o
N
C
L
O
(V)]
L
()]
Q.
O
-+
q9]
=
a
]
o}
=
._6
(@)
i
a
=

g
=
U
I
O




Introduction

* What is phase space topology and why is it important?
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Phase space topology (also, chaos topology or topology of chaos) considers how n-dimensional trajectories and
point clouds representing a flow are structured in phase space within Dynamical Systems Theory.
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o Optically pumped molecular laser run under Embedding projection Branched
E m© a resonance-operating condition. onto a plane. manifold.
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E T R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998
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Introduction

* What is phase space topology and why is it important?

. [UNIVERSITA

The first methods to reconstruct dynamic configurations in phase space from experimental time series and to
study geometric structures in this space appear in 1980.

VOLUME 45, NUMBER 9 PHYSICAL REVIEW LETTERS 1 SEPTEMBER 1980

Geometry from a Time Series

N. H. Packard, J. P. Crutchfield, J. D. Farmer, and R. S. Shaw

Dynamical Systems Collective, Physics Depaviment, University of Califoynia, Santa Cyuz, California 95064
(Received 13 November 1979)

It is shown how the existence of low-dimensional chaotic dynamical systems describing
turbulent fluid flow might be determined experimentally. Techniques are outlined for re-
constructing phase-space pictures from the observation of a single coordinate of any dis-
sipative dynamical system, and for determining the dimensionality of the system's at-
tractor. These techniques are applied to a well=-known simple three-dimensional chaotic
dynamical system.,

PACS numbers: 47.25.-c
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Introduction

* What is phase space topology and why is it important?

&
%)
R~
)
=
Z
=)

Geometric methods continue to be used, e.g., to
understand datasets of Lagrangian trajectories.

L)
c Understanding the geometry of transport: | [————————— o
-8 Diffusion maps for Lagrangian trajectory ha el SR Y o
o data unravel coherent sets AR~ ERT T N ~
CILJ Cite as: Chaos 27, 035804 (2017); ‘ : 8 0 ( $ h_ S, ::‘;’-.ii g : 1
o Submitted: 20 March 2016 . Accepted: 18 July 2016 . Published Online: 22 February 2017  “, 47, L’ : e : -‘}}_%\?&
') Ralf Banisch ', and Péter Koltai -45} 2 S Rt : ‘_ i j’ e i" i
= Sk : ,
ge] = : = <y
E -90 ' : : :
O : 0 60 120 180 240 300 360
e But is geometry the best lens we can use to n
E - classify data according to underlying differences in
— dynamics?
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Introduction

* What is phase space topology and why is it important?

UNIVERSITA

Invariants in phase space can be of different types:

a) Metric: dimensions of various types, e.g., correlation dimension (Grassberger & Procaccia, 1983),
multifractal scaling functions (Halsey et al., 1986).

b) Dynamic: Lyapunov exponents (Oseledec, 1968; Wolf et al., 1985), as discussed by Eckmann & Ruelle (1985)
and by Abarbanel et al. (1993).

c) Topological: linking numbers, relative rotation rates, Conway polynomials,

Branched Manifolds (Birman & Williams, 1983). @ ©

Invariants (a) and (b) do not provide information on how to model

the system’s dynamics, while (c) actually does!

squeeze

R. Gilmore, Reviews of Modern Physics, Vol. 70(4), October 1998
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Introduction

* What is phase space topology and why is it important?

. [UNIVERSITA

Topology is concerned with the properties of a geometric object that are preserved under continuous deformations,
such as stretching, twisting, crumpling, and bending; that is, without closing holes, opening holes, gluing, or passing
through itself. The animated image shows a continuous deformation of a mug into a doughnut: both objects are
topologically equivalent.

\
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The “recipe” to

STRETOH J sHn < “knead” the
=\ 7 Lorenz’63 attractor
e is a sequence of
STRETOH steps that are
E— - ' =’ _>> SOUEEZE —_—

—
“STReTCH

topological in
—2. BRANCH
LINE

nature.
=
@ / /\ 1 = Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch
and Squeezeland. Wiley-Interscience, 2002.
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Introduction

* What is phase space topology and why is it important?

%", [ UNIVERSITA

The advantage of using topology, instead of geometry or fractality, to describe a flow in
phase space lies in the fact that topology provides information about the invariant
mechanisms that act in phase space to shape the flow.

WL M4

Geometry may differ, but if the underlying dynamics is equivalent, the topology should be the same.

Unveiling the topology <=> Unveiling the dynamics
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Methods

A table of elements for different types of dynamical behaviour ?

Dynamical system ODEs Parameters Topologies
r = —-y—=z
Rossler Y r+ ay (a,b,c) = (2.0,4.0,0.398) \\\\.
z = b+z(z—rc
i o=y ) E000G)
Duffing i = oy—ad ot Asinwr) O w) = (0.4, 0.4, 1.0) w‘é
i: — by + (c _ dy2)$ (b) C: dp Aa w) / \‘ﬁ \
van der Pol | = —o+ Asin(wt) = S,
vy = (0.7,1.0,10.0,0.25, 7/2) N
r = —ox+oy | o
Lorenz y = Rz — y—xz (Ra g, b) — (26'07 10.0, 8/3) @@
z = —bz+uay

Gilmore & Lefranc. The Topology of Chaos: Alice in Stretch and Squeezeland. Wiley-Interscience, 2002.
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Methods

* Branched manifolds, knot-holders, cell complexes, homologies
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The concept of branched manifold, introduced by Robert F. Williams in 1974, was anticipated in Edward Lorenz’s
famous 1963 paper: on page 20, he remarks that the trajectory ‘lives’ on a surface and describes the architecture
of the attractor in terms of “isopleths.”

gs) Deterministic Nonperiodic Flow!
e EpwarD N, LORENZ
- EXPANDING ATTRACTORS
GJ by R. F. WILLIAMS Messachusetts Insiitute of Technology
O (Manuscript received 18 November 1962, in revised form 7 January 1963)
rU 138 JOURNAL OF THE ATMOSPHERIC SCIENCES VoLuMe 20
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Methods

* Branched manifolds, knot-holders, cell complexes, homologies
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Joan Birman & Robert F. Williams used branched manifolds to classify chaotic attractors in terms of the way unstable periodic
orbits are “knotted” in dynamical systems.

(040-93R3/83/0104T-36803.00/0

1
2N . 1. pp. 47-82, 1983
Topeiogy Vol. No PP Pergumon Press L1d

Prinied in Gieat Britain.
| r~y if

KNOTTED PERIODIC ORBITS IN DYNAMICAL SYSTEMS—I:
LORENZ’S EQUATIONS
lim |z(t) —y(t)| =0

Joan S. BirmMaNT and R. F. WiLLIaAMSE t— 00

(Received 31 March 1980)

§1. INTRODUCTION
The set of unstable periodic orbits (UPOs) of the Lorenz

THIS PAPER is the first in a series which will study the following problem. We

H " H ” H
investigate a system of ordinary differential equations which determines a flow on the attractor lie on a “Branched Manifold”, i.e. on a structure
3-sphere S° (or R’ or ultimately on other 3-manifolds), and which has one or perhaps obtained by identifying all the points with the same future
many periodic orbits. We ask: can these orbits be knotted? What types of knots can (Birman-Williams projection). This is a 2-manifold almost

? Wh: implications? i
occur? What are the implications everywhere (not where the flow splits or squeezes together).

Birman & Williams discovered that branched manifolds are a suitable concept to distinguish attractors which are not
dynamically equivalent.
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* Branched manifolds, knot-holders, cell complexes, homologies

In the late ‘90s, it was possible to determine whether two three-dimensional (3-D) dissipative dynamical systems are
equivalent by using knot theory or templates.

Topological analysis of chaotic dynamical systems NERSRERR STECE
Robert Gilmore and Marc Lefranc $WILEY-VCH Series Edtor: Leon O, Chisa
Robert Gilmore = — ]

Department of Physics & Atmospheric Science, Drexel University, Philadelphia,

Pennsylvania 19104 I h I I TUPULUEY HN"
Topological methods have recently been developed for the analysis of dissipative dynamical systems e o po ogy n ? N H M IES u F EH HU 5

that operate in the chaotic regime. They were originally developed for three-dimensional dissipative
dynamical systems, but they are applicable to all “low-dimensional” dynamical systems. These are

systems for which the flow rapidly relaxes to a three-dimensional subspace of phase space. f ( i i Y i
Equivalently, the associated attractor has Lyapunov dimension d;<3. Topological methods o haos In EEIEDmnﬂn Dr HODE” El]mmes 7[]”] H”mnﬂu

supplement methods previously developed to determine the values of metric and dynamical edited by
invariants. However, topological methods possess three additional features: they describe how to Fs g
model the dynamics: they allow validation of the models so developed: and the topological invariants " Christophe Leteiller
are robust under changes in control-parameter values. The topological-analysis procedure depends on Alice in Stretch and Squcczcland Robert Gilmore
identifying the stretching and squeezing mechanisms that act to create a strange attractor and organize
all the unstable periodic orbits in this attractor in a unique way. The stretching and squeezing
mechanisms are represented by a caricature. a branched manifold, which is also called a template or
a knot holder. This turns out to be a version of the dynamical system in the limit of infinite dissipation.
This topological structure is identified by a set of integer invariants. One of the truly remarkable
results of the topological-analysis procedure is that these integer invariants can be extracted from a
chaotic time series. Furthermore, self-consistency checks can be used to confirm the integer values.
These integers can be used to determine whether or not two dynamical systems are equivalent; in
particular, they can determine whether a model developed from time es data is an accurate
representation of a physical system. Conversely, these integers can be used to provide a model for the
dynamical mechanisms that generate chaotic data. In fact. the author has constructed a doubly
discrete classification of strange attractors. The underlying branched manifold provides one discrete
classification. Each branched manifold has an “‘unfolding™ or perturbation in which some subset of
orbits is removed. The remaining orbits are determined by a basis set of orbits that forces the presence
of all remaining orbits. Branched manifolds and basis sets of orbits provide this doubly discrete
classification of strange attractors. In this review the author describes the steps that have been
developed to implement the topological-analysis procedure. In addition. the author illustrates how to
apply this procedure by carrying out the analysis of several experimental data sets. The results
obtained for several other experimental time series that exhibit chaotic behavior are also described.
[S0034-6861(98)00304-3]

World Scientific

Reviews of Modern Physics, Vol. 70, No. 4, October 1998



Computing topological invariants

Methods using knots...

* Branched manifolds, knot-holders, cell complexes, homologies y &

1) Approximate trajectories by closed curves.

. |UNIVERSITA

3D trajectory set Knot invariants

— 2) Find a topological representation for the orbit structure.

3) Obtain an algebraic description for the topological structure.

1 @ 2 , f 3 gf? J.S.Birman &
@ w R. F. Williams

(xy)'x Knotted

tredal X(yx)’ xy ()" periodic
fype (4,9 tforas hpe (372 orbits in

1 2 3 ot pretrel st dynamical

— . . . systems.
1) Close-returns method — time series, though, must be long and noise free. Y
Topology:

2) Knot theory — knot = orbit in three dimensions. Vol.22. No.
I,pp.47~81.
1983

— 3) Knot invariants — e.g., linking numbers, Conway polynomials.
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* Branched manifolds, knot-holders, cell complexes, homologies
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Typically, a strip is defined between and a joining chart & a
splitting chart, ended by a joining line, which corresponds to
a Poincaré section.

Splitting chart
Knot information for a chaotic attractor can be condensed in P
a knot-holder or template. B Local torsion
R
© Definition I
N
- P
8 The template or knot-holder is a scheme used to assemble a "
n set of strips that lodge the knots along the attractor. . Permutation
- ‘
N R
O Each strip represents a path followed by the flow. y
(ol
._IL__’, | Atemplate or knot-holder may require the introduction
g of fictitious boundaries between the different strips. Toining chart
Q
-+
]o]
=
=
@)
4
o))
=

del clima




M e th Od S the user's approach to

* Branched manifolds, knot-holders, cell complexes, homologies v———lﬁ*lﬁ

topological methods in

UNIVERSITA

What’s wrong with templates? There are several problems. 3d dynamical systems
Q) Reconstructing Unstable mario a natiello
Periodic Orbits (UPOs) is not always e

Chapter 7 possible. herndn g solari

universidad de buenos aires, argentina
A braided view of a knotty story ) )
Q Thetemplate is not necessarily
topologically faithful to the branched

Mario Natiello manifold.
Matematikcentrum-LTH, Lunds Universitet
Bozx 118, 221 00 Lund, Sverige

% World Scientific

NEW JERSEY « LONDON . SINGAPORE + BEIJING « SHANGHAI « HCNG KONG + TAIPEI + CHENNAI

Q Templates are limited to 3D
systems: knots unknot in higher
dimensions.

Hernan Solari

Departmento de Fisica, Facultad de Ciencias Fxactas y Naturales

Universidad de Buenos Aires, Argentina
Periodic orbits of 3-d dynamical systems admitting a Poincaré section can be 6.6.3 Homology groups
described as braids. This characterisation can be transported to the Poincaré
section and Poincaré map, resulting in the braid type. Information from braid
types allows to estimate bounds for the topological entropy of the map while re-
vealing detailed orbit information from the original system, such as the orbits that

Still, we may want to understand the topological properties of the set of
periodic orbits hidden in our data. We need some “braidless” method (in
the sense that knots “dissolve” into trivial objects in higher dimensions|)

are necessarily present along with the given one(s) and their organisation. We re- and one method that appears to jump at hand is to consider the homology
view this characterisation with some examples —from a user-friendly perspective—, groups associated to our data [Muldoon et al. 1993, Sciamarella and Mindlin
focusing on systems whose Poincaré section is homotopic to a disc. 1999; 2001].
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* Branched manifolds, knot-holders, cell complexes, homologies
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SDI: 0167-2789(92)00026-1

Topology from time series

M.R. Muldoon®, R.S. MacKay", J.P. Huke® and D.S. Broomhead®

*Nonlinear Systems Laboratory, Mathematics Institute, University of Warwick, Coventry CV4 7AL, United Kingdom

"DRA at RSRE, Malvern, Si. Andrew's Road, Great Malvern, Worcestershire WR14 3PS, United Kingdom 1 9 9 9 t/ e SS 2

Received 15 August 1992
Revised manuscript received 13 November 1992 VOLUME 82, NUMBER 7 PHYSICAL REVIEW LETTERS 15 FEBRUARY 1999

he
Accepted 23 November 1992 z~bOdO/
%,

Communicated by G. Ahlers

) ) Topological Structure of Chaotic Flows from Human Speech Data .
We describe methods for the study of topological pro .
systems. We explain how to compute such invariants as the
and suggest a number of potential applications. Denisse Sciamarella and G.B. Mindlin
Departamento de Fisica, FCEN, Universidad de Buenos Aires, Pab I, Ciudad Universitaria,
cp 1428, Buenos Aires, Argentina 2 OO 1

(Received 7 July 1998)

We report the analysis of branched manifolds through homolog PHYSICAL REVIEW E. VOLUME 64. 036209
applicability of the topological approach to the analysis of human sp ! ’

cases are discussed. [S0031-9007(99)08424-0]
. Unveiling the topological structure of chaotic flows from data
PACS numbers: 47.52.+j, 02.40.Sf, 43.72.+q
Denisse Sciamarella and G. B. Mindlin
Departamento de Fisica, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Pab I, Ciudad Universitaria,
Casilla de Correo 1428, Buenos Aires, Argentina
(Received 13 December 2000; published 21 August 2001)

We report the analysis of branched manifolds through homologies, in order to extend the range of applica-
bility of the topological approach to the analysis of chaotic data. Analytic and numerical cases are discussed.

DOI: 10.1103/PhysRevE.64.036209 PACS number(s): 05.45.Pq, 47.52.+j, 02.40.5f
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* Branched manifolds, knot-holders, cell complexes, homologies
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Computing topology RESTRICTIONS

using knot theory o . _
 Precision and length of time series must be good enough

y % for orbits in phase space to be reconstructed accurately ...

e Phase space dimension n cannot be higher than three,
3-D trajectory set  Knot invariants since knots or braids unknot ...

Computing topology

ino h logi
using homologies HOMOLOGY GROUPS

e Time series can be shorter and noisy since the method is

y & independent of the reconstruction of trajectories in phase

space (orbitless).

n-D point-cloud Homologies e Applicablein n >3 dimensions: the method does not rely on
knots or braids (knotless and braidless).
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Computing topological invariants

Methods using homologies

* Branched Manifold Analysis through Homologies (BraMAH) y &

— 1) Approximate points as lying on a branched manifold.

. |UNIVERSITA

n-D point-cloud Homologies

_ 2) Find a topological representation for the branched manifold.

3) Obtain an algebraic description of the topological structure.

— ———> Hoo~ 7
0 ;

BraMAH HOMOLOGY H ~ Zz;

COMPLEX GROUP |

construction computation H, = (

1) Local approximation by d-disks => short and noisy time series can be handled.

—— 2) Build a cell complex keeping track of the gluing prescriptions => 3D+ can be handled.

~ 3) Compute homologies and orientability properties of the cell complex => the structure can be identified.
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* Branched Manifold Analysis through Homologies (BraMAH)

UNIVERSITA

Acronym first used in Chard, Artana & Sciamarella,
Physica D 405 (2020) 132371

Sanskrit: STEHAT, Romanized: Brahma or Bramah

Brahma is a Hindu god, referred to as "the Creator" within the
Trimurti, the trinity of supreme divinity. He is associated with
knowledge and creation.

A BraMAH cell complex is a particular type of cell complex,
constructed to adjust to the topology of a branched
manifold. Cells approximate sets of points lying on a
branched manifold.

One of his hands holds mala (Sanskrit: ATAT) symbolizing
time.
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* Branched Manifold Analysis through Homologies (BraMAH)

in d dimensions (d £ n)

A patch is a set of points {x;} around an arbitrary point x, , that is locally homeomorphic to the interior of a disk

Point-cloud decomposition
into patches
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A patchis a good approximation of a
hyperplane of dimension d in a space of
dimension n if the square roots of d among
the n second moments of {x;} decrease
linearly with R while (n—d) decrease as lower
powers of R.

Xij= X=X o) =

find N, such that d among n singular
values of X;; vary linearly with N

Patches are used to construct the
cells in the cell complex
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%

= 5

> A * Branched Manifold Analysis through Homologies (BraMAH)

= A

How to determine if two spaces are Cell complex covering the
topologically equivalent? » cylinder

. O-cell 1
N

C
e

v
© ——"> 2-cel

- 74

Q

ol
9 1-cell
= 2
=

Q
©

= A k-cell is a set corresponding to the interior of a disk in k A cell complex is a set of cells such that their
= £ dimensions whose borders are divided into cells of lower borders are elements of the complex with
-8 — dimension. interiors that do not intersect.
£ =
Q

= O
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* Branched Manifold Analysis through Homologies (BraMAH)

1

. [UNIVERSITA

Oriented

/ complexes
(O Y Uniformly

oriented e
complex

. =4
\ Example of a 1-chain:

<3,7>-<5,7> Example of border map:

A k-chain in a complex K is a sum
C = 2a,0; such that g; are the k-
cells with a; € Zand such that
C(K) = {k-chains of K} has an A border map is an operation 9: C,(K) —C, ;(K) such that
abelian group structure. 0(2a,0)= Za, 0( o)

~ 0(<3,7,4>)=<3,7>-<4,7>-<3,4>
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* Branched Manifold Analysis through Homologies (BraMAH)

. [UNIVERSITA

v 1-cycle | Ak-cycleis a k-chain Csuch that 0(C)=0
—~—a— 1

Z(K) = {all k-cyclesin a complex}

J’ 7 O T A k-border is a k-chain C / there exists a (k+1)-chain D
such tat 0(D)=C

B,(K) = {all k-borders of an n-complex}

1-bord

Equivalence relationship:

Two k-chains C; and C, are called homologically equivalent (C; ~ G,) if
there exists a (k+1)-chain D such that 0(D)=C;-C,

Example: -<3,4> + <3,7>~-<1,4> +<1,2> +<2,5> + <5,7>
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* Branched Manifold Analysis through Homologies (BraMAH)
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Homology groups

The n+1 homology groups of an n-complex K are the sets:

H.(K) = Z,/B, ={the k-cycles being homologically independent that are not borders of any (k+1)-cell}

Example: the cylinder

Ho(K,)=[[<1>]] ~Z* = one connected component
H,(K,)=[[<1,3>+<3,4>-<1,4>]] ~Z' = one nontrivial loop

H,(K,)= & ~ 0 = no cavities enclosed
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* Branched Manifold Analysis through Homologies (BraMAH)
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Homology groups

The n+1 homology groups of an n-complex K are the sets:

H.(K) = Z,/B, ={the homologically independent k-cycles that are not borders of any (k+1)-cell}

Example: the torus

Hy(K,) =[[<1>]]~ Z* = one connected component

H,(K,) ~Z?>=> two nontrivial loops

H,(K,) ~ Z* = one cavity enclosed
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* Branched Manifold Analysis through Homologies (BraMAH)
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Homology groups
The n+1 homology groups of an n-complex K are the sets:

H.(K) = Z,/B, ={the homologically independent k-cycles that are not borders of any (k+1)-cell}

Example: the Klein bottle

Ho(K3) =[[<1>]]~ Z} = one connected component
H,(K;) ~Z?>= two nontrivial loops

H,(K3) ~ 0 = no cavity enclosed

The Klein bottle has a torsioned 1-cycle that is not
the boundary of any 2-chain, but that becomes one
if travelled twice, thus defining a weak boundary.
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* Branched Manifold Analysis through Homologies (BraMAH)
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An orientability chain in a uniformly oriented complex K with cells b; is a chain O=0(Xb)) = X a;t; if there
exists at least one coefficient j such that | a;|>1. We call torsion chains the consecutive cells t; preceded by
the same multiple in O.

Example: Mobius strip. 1
Ky QoD
Ho(K,) =[[<1>]]~ Z* = one connected component : 6
s t
H,(K,) ~ [[L]] Zt=> one nontrivial loop -

ba
H,(K,;) ~0 = no cavities enclosed / O 10
SEOR
- 11
O(K,) = 6(Zb)) =-2 <1,7> @ -
> 12
T(K,) ={<1,7>} = one torsion located at <1,7>. @ 4
Pl
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* Branched Manifold Analysis through Homologies (BraMAH)
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19

3D x'=-(z+2) d (x-a) + (2-z)
(ax-2) -By - & (x-2) ((x-2)* +
+y'/R?)

y'=-(z+2) (y-b) + (2-2)
(B(x-2)- ay-
-ay (x-2) ((x-2)° +
+ v/ R?)

y 1 1

£2' = (4-Z°) (z+2-m (x+2)) - sC z

4D X' = *(z+2) d (X— (a+ €3 (2+W)) ) + (2"2)
(a(x-2) -By - a (x-2) ((x-2)* +
+y*/R)

y' =-(z+2) (y-b) *+ (2-2)
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rU + /R?)) o
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% €2 =(47%) (z+2-m (x+2)) - Cc 2 +}
reT EW = (4-2) (242 -m (x+2)) - &2 C 2 N TR 3
-D 1o X 0
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Methods

* Persistent homologies

The concept of persistent homology (PH) emerged independently in Bologna, in Colorado, and within a bio-geometry
project in North Carolina, towards 2005.

The method
T constructs a series of
Topology for .
Computing cell complexes using
a rule that depends
Afra ). Zomorodian

on a distance
parameter (& or d).

The connectivity of
the point cloud
increases as € or d
grows.

Zomorodian, A. J. Topology for PH was conceived to solve pattern recognition problems, mainly in scanned images.
computing (Vol. 16). Cambridge

University Press.
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* Persistent homologies

Software package

OpenPHE

javaPlex &/
Dionysus &

Perseus
PHAT g/
DIPHARY

Gudhi &

CTLE
phom &

TDAR
Eirene &/’

Ripser

the Topology ToolKit &7

Software package

Creator

Rodrigo Mendoza-Smith, Jared Tanner

Andrew Tausz, Mikael Vejdemo-Johansson, Henry Adams
Dmitriy Morozov

Vidit Nanda &
Ulrich Bauer, Michael Kerber, Jan Reininghaus

Jan Reininghaus
INRIA

Ryan Lewis
Andrew Tausz

Brittany T. Fasy, Jisu Kim, Fabrizio Lecci, Clement Maria,
Vincent Rouvreau

Gregory Henselman
Ulrich Bauer

Julien Tierny, Guillaume Favelier, Joshua Levine, Charles
Gueunet, Michael Michaux

Creator

Latest
release

0.01 &
425

4.0 beta
1.41

0.2

1.5

1.01

1.0.1

0.9.2

Latest
Release

Release
date

25 April 2019
14 March 2016

28 January
2018

16 June 2016

9 March 2019

15 September
2016

25 June 2017

Release date

Software
licensel”)

Apache 2.0
Custom &

GPL

GPL

GPLv3

BSD

GPLv3

LGPL

BSD

Software
licensel”!

Open
source

Yes

Yes
Yes

Yes
Yes

Yes
Yes

Yes

Yes
Yes
Yes

Yes

Yes

Open
source

12

Programming
language

Matlab, CUDA
Java, Matlab

C++, Python
bindings &’

C++
C++
C++

C++, Python
bindings &'

C++
R

R
Julia

C++

C++, VTK and Python

bindings

Programming
language



Methods

* Persistent homologies
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Filtrations: the rules used to build cell complexes as the filtration parameter is varied. The Vietoris-Rips filtration is illustrated in
the gif below.

Vietoris-Rips cell complex

Example:

- A ball of diameter d is drawn around these 4 ° o
points. . o .S
- Two balls intersect (two points are separated g :
by a distance less than d) - connect the two ° g
points with a segment or 1-cell (simplicial cell of ” o
dimension 1). i °

Record the barcode:
- The triangles formed are completed by
forming 2-cells (simplicial cells of dimension 2),
and so on.

The Vietoris—Rips complex was originally called the Vietoris complex, for Leopold Vietoris, who introduced it as a means of
extending homology theory from complexes to metric spaces.
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* Persistent homologies Ripser

Load a point cloud [T

.. [UNIVERSITA

PH is not a Branched Manifold approximation method
but can help counting holes in phase space point-clouds,
serving as a guide.

Choisir le fichier lorenz_532.txt

https://live.ripser.or
Practical problems with PH ps:// P g

- The number of holes will depend on the choice of ¢, which is

always somewhat arbitrary. £ gnfwax
- H,generators and cell complexes are generally not provided as 0 5 1lo
output.

Fundamental problems with PH —

The complexes are constructed in such a way that: -_—

(1) #cells > #points in the point-cloud = large point clouds are H - ‘
not supported. 1 -

(2) the complexes are not topologically faithful to the branched manifold.

Constructing the BraMAH complex from a Vietoris-Rips complex is an
interesting open problem in computational topology. -

o
N
C
R
O
(V)]
L
()]
Q.
O
-+
q9]
=
Q
]
o}
=
._6
(@)
i
a
=

g
=
U
I
O




Applications

 Topological methods can be harnessed for multiple purposes

UNIVERSITA

“Topological methods can be used to determine whether or not two dynamical systems are
equivalent; in particular, they can determine whether a model developed from time-series
data i1s an accurate representation of a physical system. Conversely, it can be used to provide
a model for the dynamical mechanisms that generate chaotic data.”

R. Gilmore, Reviews of Modern Physics, Vol. 70, No. 4, October 1998

v Validate/refute models — simulations vs. observations.

v' Comparing models — time series generated by different models.

v' Comparing datasets — e.g., in situ versus satellite data.

v’ Extracting models from data — using global modeling techniques with a topological validation.
v’ Characterizing and labeling chaotic behaviors — towards a systematic classification.

v’ Classifying sets of time series according to their main dynamical traits — e.g., in Lagrangian Analysis.
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Applications
e Lagrangian Analysis
. 0 D .
Eulerian —+v-V=—  Lagrangian
What is Lagrangian analysis? Ot Dt
—_— S
/‘ Eulerian {ffgil;ang?a;?
. . . . . derivativ Materia
In fluid mechanics, two viewpoints are possible. \ SRRV Herivative
In the Eulerian viewpoint, fluid motion is ot il t+0t
observed at specific locations in space, as time ________________________________ o
passes. 2
/
In the Lagrangian viewpoint, the observer follows Spatially fixed Following the motion
individual fluid particles as they move through volume element

. : of the fluid element
the fluid domain.

The Driven Double Gyre (DDG) system is an analytic model, often used to show how much Lagrangian patterns may differ
from patterns in Eulerian fields.

It was introduced by Shadden et al. (2005) to mimic the motion of two adjacent oceanic gyres enclosed by land and,
since Sulalitha Priyankara et al. (2017), it is known to present chaotic transport in some ‘regions’ of the fluid, even if the
Eulerian picture is periodic.
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e Lagrangian Analysis
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Let us consider the kinematic model inspired in a pattern that occurs frequently in geophysical flow.

Double-gyre Flow at 0.01s

aal (z,y) € D =10,2] x [0,1]
| delt) _ 7 A sin(7 % forcing)
= g) cos(my)
o | dyd—(f) = wAcos(m * forcing) sin(ry)(2ax + b);
:: a = esin(wt), b =1 — 2esin(wt)
:f forcing = ax? + bx
L 05 1 15 2 Ifozojff=10,6=0.1,A:0.1,w:%

From the Eulerian perspective the periodically driven Double-Gyre flow has a periodic and simple behaviour. But what
about particle behaviour? What happens, for instance, if there is an “oil spill” in the middle of the domain?
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e Lagrangian Analysis
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Let us paint in blue the particles that are continuously passing through the centerpoint (streakline) to “visualize” particle

behaviour.
animt ] [11] : Transport barriers appear, showing
o : that the tracer invades some parts of
: . the domain leaving some other
0.8 ] regions blank.

. | These non-mixing islands move
circularly in each half-domain.

| What can topology tell us in a
e 0 @m0 ws 0 =zd [ problem of this kind?

Lagrangian time series (the position or the velocity of a particle) can be generated and studied in state space with our
topological tools.
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e Lagrangian Analysis
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A BraMAH analysis applied to a collection of 8528 particles (x; time series) in a time window of 500 units yields five
topological classes. Computations involve complexes constructed from 4-dimensional time-delay embeddings.

® ® ®

‘T il 1 1 | 1
1 "U‘I' HM 0.8I‘1'III||‘|||'|‘l'Hlll|’|l||'|l|||'“ B o8 ol | N
2o 0 W2k = o > NGt =
05,;“1"\’ iw.i\q'f,'.f.m "W",'\l,‘ O I TTTVERPURYY > o os T TTMITITMETFIMFFTT = o
AL L
L t e o 100 200 t 00400 o 100 200 . 300 400 500 0 100 200 300 400 500 % 10 200 300 400 500
. t

Five-loop structure Moebius strip Standard strip Torus Klein bottle
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e Lagrangian Analysis
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Topo!ozical colouring of 8528 advected particles in the driven Double-Gyre flow to visualize how topologies are
organized in physical space.

Assigning a different color to each topological class,
the colors in motion define particle sets that move
together forming coherent regions, i.e., without mixing
with the surrounding fluid.

Let us use the term ‘separator’ to designate the
frontier between differently colored regions.

Such flow separators are associated with ‘Lagrangian
coherent structures’, known to separate dynamically
distinct regions in fluid flows (Kelley, Allshouse &
Ouellette, 2013).
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e Lagrangian Analysis
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Topo!ozical colouring of 8528 advected particles in the driven Double-Gyre flow to visualize how topologies are
organized in physical space.

If the advected particles are coloured according to
the BraMAH topological analysis, the non-mixing
islands become apparent.

Classifying topologies (= classifying dynamics) can

be used:

i.  for an indirect identification of particle sets
that do not mix with the surrounding fluid;

ii. tocharacterize such dynamics within each
region;

iii. tocompare distant regions behaving
similarly; and

iv. to compare the behaviour of particles in
different flows. 1
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a = esin(wt), b =1 — 2esin(wt)

Applications ¥
a(t) = nsin [wf (1 + sin(%))} ,b(t) =1 — 2af(t)

e Lagrangian Analysis

UNIVERSITA
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What happens if we introduce a perturbation in the driving force of the Double-Gyre in which the particles in
the formerly non-mixing islands slowly migrate towards the chaotic sea?

! A | 0 ™ N P i a T -—
0 200 400 600 800 1000
t

x,(t)
X, (t-27)

>0.5

x,(®)

The topology that is computed is always referred to the time window
that is chosen for the analysis. A particle that migrates ‘moves’ from
one topological class to the other.
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Applications

Climate dynamics

Can homologies distinguish between simulated climate attractors?

Climate Dynamics
https://doi.org/10.1007/500382-019-04926-7

®

Check for
updates

Co-existing climate attractors in a coupled aquaplanet

M. Brunetti'© - J. Kasparian' - C. Vérard?

Received: 8 March 2019/ Accepted: 2 August 2019
© Springer-Verlag GmbH Germany, part of Springer Nature 2019

Abstract

The first step in exploring the properties of dynamical systems like the Earth climate is to identify the different phase space
regions where the trajectories asymptotically evolve, called ‘attractors’. In a given system, multiple attractors can co-exist
under the effect of the same forcing. At the boundaries of their basins of attraction, small changes produce large effects.
Therefore, they are key regions for understanding the system response to perturbations. Here we prove the existence of
up to five attractors in a simplified climate system where the planet is entirely covered by the ocean (aquaplanet). These
attractors range from a snowball to a hot state without sea ice, and their exact number depends on the details of the coupled
atmosphere—ocean—sea ice configuration. We characterise each attractor by describing the associated climate feedbacks, by
using the principal component analysis, and by measuring quantities borrowed from the study of dynamical systems, namely
instantaneous dimension and persistence.

Keywords Coupled aquaplanet - Attractors - GCM - Complexity

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf
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Time [yr]
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SAT (°C) —33.00+0.03 22x01 17.0+02 234+01
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Applications

* Climate dynamics

The time series of the annual averages are, when embedded, indistinguishable from each other, giving rise to point clouds

distributed in the form of solid spheres or solid tori.

Hotstate
1 -
0f 8
51 4
A0k L 1 L 1 -
0 500 1000 1500 2000 2500
10 Warmstate :
5] = 5h \ \ -
—~ 1 g of " A -
5 / 4
\ . L f L .
15 0 500 1000 1500 2000 2500
2 t
0 . Coldstate .
] - ) —_r i
> r- V" ¥ wig Rt
50 s L '
R ‘//( 0 500 1000 1500 2000 2500
\ S :
> < Wiatorbelt
> 2F
o
20 L 1 " "
0 500 1000 1500 2000 2500

Solid sphere in phase space - statistical version of a

fixed point in phase space: transient discarded, the

system stabilizes around a given point.
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T
. :1:n|—
= 200 ¢
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a 1000 2000 3000 4000 5000 EO0O i BODO OO0 10000
t
‘Walerbalt
. 250 7 Jlll_r.. i ,-r-l AT AT AN AT I_.-.I il |_'- A J,n I_.-\\;f. = -'”'I,\'. Fawe
Wl 4L Wy i i
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Solid torus in phase space - When the predominant
dynamics in the global variability is that of the seasonal
cycle; see Falasca, F., & Bracco, A. (2022). The seasonal
cycle will be filtered out.
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The dynamical properties of a climate attractor depend on its local and instantaneous properties, rather than its
average properties [Lucarini et al, 2016]. Time series for the analysis will have a lower time resolution than that used
in [Brunetti et al, 2019], filtering out the seasonal cycle.

L)
E ; T=1 days HO®MRAQ ; T=1 days
.g 0.8 0.8
U
m 0.6 0.6
1°]
: 0.4 0.4
T=1 days T=1 days

GJ 0.2 1 0.2 "]
_9- 0.8 0.8
_L_J 00 0.2 0.4 0.6 0.8 1 UD 0.2 0.4 0.6 0.8 1
) 0.6 06
ge)
E 04 0.4
% 0.2 0.2
E rU 00 0.2 04 0.6 0.8 1 00 0.2 04 0.6 0.8 1
5 E
.8 o Evolution of four attractors with sliding time windows of 1000 days (range 5000 days) and daily time resolution. The time series
% @ were calculated by Maura Brunetti specifically for Luciana Salvagni’s graduate thesis.
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S To analyze the persistence properties, topological markers can be defined to condense the salient
features of holes.

0.35
N L63 Onginal

F1,: the start (birth) value of the largest 1- . e reconstnucted
hole

0.25 1
F1,: lifetime of the largest 1-hole (reflects the
size of the geometrically dominant 1-hole) 220

F15: sum of the half-lives of all 1-holes

F1,: averaged lifetime of the 1-holes
(indicative of the average size of the 1-holes) 7
0.00 j D

F1, Fl Fl3 / 300 Fla
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https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf
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Topological markers for the four climatic attractors

* Climate dynamics
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Each attractor has a predominant
trait in terms of persistent
homologies that distinguishes it
from the others in time windows

of one thousand days. l l

FO, Foy FOy | 300 FOy Fl; /50 Fls

g

Betti 0 Feature Value
g g B
Betti 1 Feature Value
2 e s

Atmospheric variables lt-lnos pheric variables

The topological structure of each

L)
N
C
L
W]
n
qo]
: ) ) ' (a) (b)
a attractor is not yet unveiled: it — —
= cannot be condensed into a = oo = oo
u . . 0.04 0.08 4
= single representative cell E 3
> >
g Complex. s 003 g 0.06
a g g
H . . E 0.02 : 0.04
3| Persistence diagrams cannot be g £
-] @
= E used, at this stage, to obtain a
O .= BraMAH complex.
(@) TJ FO FO, FO3 / 300 FO4 F1, F1; F13 / 50 Fls
-Ia—j _ Sea variables Sea variables
S % © ()

https://web.dm.uba.ar/files/tesis_lic/2023/Salvagni.pdf




Templex

“There are more things in Topology and Dynamics, than are dreamt of in Homologies.”

UNIVERSITA

o This paper was selected as Featured
AI P Chaos: An Interdisciplinary Journal of
Nonlinear Science

HOME BROWSE INFO FOR AUTHORS COLLECTIONS ﬂ SIGN UP FOR ALERTS
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Templex

* Why and how was it conceived? (% = —y—z,

Homologies cannot distinguish between two different attractors produced by the Rossler 4 y =X+ ay,
dynamical system with different parameter values (spiral Rossler attractor with a = kZ =b+ Z(x —0).
0.343295 on the left and the funnel Rossler attractor with a = 0.492 on the right).

. [UNIVERSITA

Spiral Rossler attractor Funnel Rossler attractor
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Templex

*  Why and how was it conceived?

, [UNIVERSITA

The template does distinguish between the two: the spiral Rossler attractor has two strips (0, 1), while the funnel
Rossler attractor has three strips (0,1,2).

Spiral Rossler Funnel Rossler
attractor P attractor
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Templex

* Why and how was it conceived?

UNIVERSITA

The spiral and funnel Rossler attractors are homologically equivalent: they have both one hole in the centre
(Hy=2Z%). e

H,(K(R)) = [[(0,2) — (0,7) + (2,4) + (4,7)]] H1(K(R3)) = [[{0,2) — (0,6) + (2,4) + (4,6)]]

But there is more information in a cell complex than the one contained in its homology groups... for instance,
the joining lines! They can be detected as the 1-cells shared by at least three 2-cells (heavy lines).
Notice that the recipe to scotch the cell complexes is different.
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Templex

*  Why and how was it conceived?

But there is something else that is very important and that is
missing in a cell complex representing a branched manifold.

. [UNIVERSITA

This is the flow or, in other words, time!

Homologies do not consider the action of the flow on the cell
complex...

In order to take the flow on the complex into account, the cell
complex will be endowed with a directed graph that prescribes (a)
the flow direction between its highest-dimensional cells.

Periphery

5 > ] = 6
Definition 1. A templex T = (K, G) is made of a complex K
of dimension dim(K) = « and a digraph G = (N, E) whose under-
lying space is a branched «-manifold associated with a dynamical
system, such that (i) the nodes N are the «-cells of K and (ii) the
edges E are the connections between the k-cells allowed by the flow. 3= 2 -4
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Templex

*  Why and how was it conceived? How is it computed?

Spiral Rossler attractor

T(R)=(K(R),G(R))

Periphery
(@)

2 Stripexes in T(R):

Itwisted l-2—-4—-6—>1,

Funnel Rossler attractor
T(R3)=(K(Rs),G(R3))

/ p— 'y

3 Stripexes in T(R;):

l—>2—->3->4—-1,

l—-2—-3—->5—1

twisted l—>2—>3—>5—>l,|

1-2—->3—->6—1,
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Templex

 Example I: Lorenz 63 example (autonomous)

T(L)=(K(L),G(L))
/ Y7 z“ Y14, 5
// / / %
/a1 / 21 Mizy \
' e ) X
\ Y6 rd Y13, Yi1,: \
[ /] b N
10 9 8§ 0 . P _ ‘4 M7 18 19
{ \ \Centre ” ] - \Centre ‘I |
\ \ y \\ _5/ ’J“’\‘ \“i\""/ v |
\ 2 / 9 /

N NS N s [ 2
N i~ _ 52 of \ st - //
\\\ A\:_Y,3 6 ,// l \\\ lﬁ YI_O/A//

e s S Z--""HH/‘ \"-r._urv%:”_ —1 ‘67 ) ,x'/-/
Periphery Flow Periphery

/ \/3—’5—’7\/ \
\ /\14<—12<—10/\13«/

T(L)=(K'(L),G"(L))

(with fewer cells)

Four stripexesin T(L):

[ cycles
=8—-9— 11— 13 — 8§, J
[, =1-3->5->7—>8| 1 \eak
[ cycles

|C325§—>10—>12—>14—>L|

The weak cycles that form the two twisted stripexes
correspond to a single generatex of order 2.



Templex

 Example lI: 4D Deng attractor (autonomous)

UNIVERSITA

A four-dimensional system designed from a
three-dimensional system proposed by Deng.

x=—(z+2)dx—[a+e&2+w])+ 2 —2)

—72)?
[oe(x—Z)—,By—o:(x—Z)(x R)2+y2],
y=—+2)(y-b+2-2 L
—2)"+
| [ﬁ(x_zHay—ay(x R)z y}’

z4+2 — u(x+2) B

z=4—7) . z,
1

WZ(LL—ZZ)Z—'_Z_M(X—'_Z) — cz.
€2

A solution to this system was already investigated with a BraMAH cell complex (but not with a templex) in
Sciamarella & Mindlin, 2001.
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Templex

* Example Il: 4D Deng attractor (autonomous) Five stripexes in T(4D)=(K(4D),G(4D))
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<
> Templex
v
=
m |
> * Example Il: 4D Deng attractor (autonomous) | /f\ 5
Z
— The templex can be seen as dissecting the phase-space structure into /
QTAT several identifiable components, connected at certain joints with non- /)&\:
redundant pathways (stripexes) on it. )
|
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The templex properties: ' ~
- some describe the structure alone (holes, torsions)
- others describe the flow along the structure (stripex, twists).




Templex

* Ongoing work:

A reduced templex can be obtained using a set of topological rules. Cells in the BraMAH complex are merged if they do
not add new information, and the digraph is redrawn in terms of main splitting and joining nodes.

. |UNIVERSITA

/3"\ 17
1 4 \ 1 A \\\
147 21
O 2 3 O 2 3 Q 5 O 2 7 O /l_\i
/ * ///" /N P o IN

* 4 i 6 ' 0 \\

1 1 \ / 40/ 37" 2 : 2
8+

Spiral Rossler Funnel Rossler Lorenz 4D Deng
attractor attractor attractor attractor

The reduction leads to a combinatorial approach. A certain type of dynamics is obtained by assembling fundamental
dynamical units of two types: O and S.

Caterina Mosto, Gisela D. Charo, C. Letellier & Denisse Sciamarella,
Templex-based dynamical units for a taxonomy of chaos, in preparation.
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Work in progress with C.

Temp/ex Mosto, G. Chard & J. Ruiz in

collaboration with F. Sévellec
(LOPS, Brest).
 Example lll: 3D AMOC example (autonomous)

&
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4
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Let us now consider an autonomous 3D model of the Atlantic Meridional Overturning Circulation (AMOC) in Sévellec et
Fedorov (J. Clim., 2014) reproducing the chaotic dynamics of the Quaternary glaciations.

diw = —Aw — €BSps,
The simplest AMOC model has

© - _ . :
N drSpr=+$25ns — KSpr + Fpr, Aipie="y ~t ‘ the same set of stripexes as the
7] drSns = —$2SpT — K Sns + Fngs. il w LTS e spiral Rossler attractor.
‘O — e e W
O oo
e
= T(AMOC3D) = (K(AMOC3D), G(AMOC3D))
a ) L
) y23’V240 — Va7
= iz s K(AMOC3D) has two 1- )
(g quv .qyzg 1 0
= 2 Fve, holes
Q V1o Ve Ve
-+ } f Vi
] Ve Vs Y T(AMOC3D) has two
E m© c-.y';y,s _M'y ) stripexes, one of which \_/
'-6 E . o}/’sn}’rd y,go}’12ey,r is twisted.
=
%’ @
O
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Work in progress with C.
Mosto, G. Chard & J. Ruiz in
collaboration with F. Sévellec
(LOPS, Brest).

Templex

 Example IV: Unstable AMOC (non autonomous)

Let us consider the imposed temporal changes in the position of the edge of sea ice (ESI) to account for the chaotic behavior
during the glacials and for the stable ocean conditions during the interglacials.. F5z; and F, are the Fourier projections of
surface salt flux.

dth—ka)—eﬁSNS, -0'-1| T T T T T T T |70
0.05 | 4
d; Spr = +52SNs — K Spr + Fpr, 2
> o 63
de SNs = —$§25pr — KSNs + Fis. % ool I . A ]
1 —_ SU 27 —i0 - ] 1 ] l| 1 ] 1
where Fpr +iFns = nJo Fe de. OG0 80 70 460 450 40 430 120 110 00 96"

Simulated variations in the overturning rate (-Q) for two slightly different sets of initial conditions (solid black and dashed
red lines) for a single glacial-interglacial cycle.

The grey sawtooth line indicates the imposed temporal changes in the position of the edge of sea ice (ESI).

The four vertical lines indicate the freezing times (t,) used later to compute the Pullback attractor (PBA) [Ghil et al, 2008;
Chekroun et al, 2011].



Work in progress with C.

ﬁ Tem /ex Mosto, G. Chard & J. Ruiz in
= p collaboration with F. Sévellec
g (LOPS, Brest).
>  Example IV: Unstable AMOC (non autonomous)
(A) {o =-175 kyr (B) to =-150 kyr Contents lists available at ScienceDirect rar
0.1 0.1 Earth and Planetary Science Letters o)
0.08 0.08 rcomiiocat =
0.06 0.06
Unstable AMOC during glacial intervals and millennial variability: @Cmm
0.04 0.04 The role of mean sea ice extent
rU . 0.02 0.02 Florian Sévellec™*, Alexey V. Fedorov"
E s o 0 "
(aF] ¢ .02 -0.02
- G —2 -0.04 0.04 o EDGE OF THE SEA IECO\IEH(‘M)
n -0.06 -0.06 .
o . 008 -0.08 -
L -01 -01 20 30 <40 TM:EIk : G0 70 100
GJ _10 _5 0 5 10 _10 _5 0 5 10 ATTRACTOR OF THE NONAUTON&I&IOUS LOOP MODEL
Q. . © (D)
. — & 01 01
. L_J 0.08 0.08
H 0.06 0.06
E b 0.04 0.04 %
Q __ 0,02 0.02
-+ 8§ 5 o 0
ge] G
E ' -0.02 -0.02
rU -0.04 -0.04
o = T 008 0.06
O -0.08 0.08
T — 0.1 0.1
o o R
2 o Sp.s (Pst) S.s (PsW)
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Templex

 Example IV: Unstable AMOC (non autonomous)

Work in progress with C.
Mosto, G. Chard & J. Ruiz in
collaboration with F. Sévellec
(LOPS, Brest).

4D solutions: we obtain a cloud of four-dimensional points. We construct the BraMAH complex from this point
cloud. The four-dimensional point cloud does not have false neighbors: it is related to an autonomous writing of
the AMOC equations and can be used to build a templex.

-1.204390949016654645e-02
-1.224216393305090946e-02
-1.243740567030636977e-02
-1.262932547193569219e-02
-1.281761394464031763e-02
-1.300196222019738522e-02
-1.318206265102916247e-02
-1.335760953344140682e-02
-1.352829982505172543e-02
-1.369383396027380913e-02
-1.385391662238839167e-02
-1.400825754992730994e-02
-1.415657236815926791e-02
-1.429858339870929487e-02
-1.443402050473086007e-02
-1.456262192774995280e-02
-1.468413509473222647e-02
-1.479831746114401020e-02
-1.490493731082714705e-02
-1.500377453792354869e-02
-1.509462142964136840e-02
-1.517728339478972496e-02
-1.525157967480668918e-02
-1.531734402118566096e-02
-1.537442532355817737e-02
-1.542268819799532883e-02

-3.755666436397816499¢e-01
-4.105094258159222020e-01
-4.455459503156868895e-01
-4.806182011675594890e-01
-5.156665152828940890e-01
-5.506297133049842252e-01
-5.854452473115573374e-01
-6.200493585640195482e-01
-6.543772419896768389e-01
-6.883632413582051468e-01
-7.219410390573020031e-01
-7.550438634653665604e-01
-7.876047132207103507e-01
-8.195565760147025536e-01
-8.508326700754310634e-01
-8.813666883084957382e-01
-9.110930350798221999%e-01
-9.399470891449953625e-01
-9.678654534644385299e-01
-9.947862054894188732e-01
-1.020649159083170110e+00
-1.045396106763873956e+00
-1.068971066939994996e+00
-1.091320526419735426e+00
-1.112393665222866090e+00
-1.132142579929327209e+00

1.306518394821738482e+00
1.302943763424306400e+00
1.297985263600033523e+00
1.291628288655764401e+00
1.283860898299330700e+00
1.274673984047107300e+00
1.264061403415025930e+00
1.252020112163938492e+00
1.238550270411638454e+00
1.223655375731521167e+00
1.207342364900948040e+00
1.189621705883329605e+00
1.170507470205472522e+00
1.150017391270899081e+00
1.128172909629967080e+00
1.104999200382378088e+00
1.080525186846978958e+00
1.054783525091836704e+00
1.027810576471543280e+00
9.996463597398603795e-01
9.703344758810172888e-01
9.399220267897770986e-01
9.084595025506267962e-01
8.760006462164051655e-01
8.426023160366005182e-01
8.083243076167658803e-01

1.348398174857631283e-02
1.348421537371332669e-02
1.348444899293549729e-02
1.348468260624273440e-02
1.348491621363492356e-02
1.348514981511196587e-02
1.348538341067376072e-02
1.348561700032020402e-02
1.348585058405119691e-02
1.348608416186663009e-02
1.348631773376640641e-02
1.348655129975042180e-02
1.348678485981857564e-02
1.348701841397076037e-02
1.348725196220687365e-02
1.348748550452682354e-02
1.348771904093049555e-02
1.348795257141779599¢e-02
1.348818609598861386e-02
1.348841961464285373e-02
1.348865312738041326e-02
1.348888663420118143e-02
1.348912013510506283e-02
1.348935363009195684e-02
1.348958711916175765e-02
1.348982060231436464e-02




Work in progress with C.

< Mosto, G. Chard & J. Ruiz in
E Temp/ex collaboration with F. Sévellec
5 (LOPS, Brest).
>  Example IV: Unstable AMOC (non autonomous)
Z
-
T(AMOC4D) = (K(AMOC4D), G(AMOC4D))
: Vo V1o
2 g “\‘-"‘ '0 -0 y
K(AMOC4D) has 3-cells Ve o
/ (basis: solid torus) i iz
4 »
o 4L
Three 1-holes in the H13 :
BraMAH complex Ve Vs
o, Yi1s o
0}’5 o
3 stripexes g T S j
(1 twisted) NN Z ’ AL L0

cit=4—->5—-26—>1—->2—-3
co=4—55—>26—>7->8>9—->10—>11 —>12 > 13 — 19
[twisted c3=4—55—-56—>7—-8—-9—510—>11—>12— 14— 15— 16 > 17— 18 |

What is the relationship between the PBA approach and the 4D Templex structure?
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Work in progress with C.
Mosto, G. Chard & J. Ruiz in
collaboration with F. Sévellec
(LOPS, Brest).

Templex

 Example IV: Unstable AMOC (non autonomous)

. |[UNIVERSITA

The templex can be considered as a single static object of higher dimension, combining all the « parts » of the
structure observed in the snapshot sequence in a PBA approach as a fonction of (t,t).

(A) 1 =-175 kyr (B) 1, =-150 kyr
1

-Q ')

- yrh)

Working in higher dimensions may provide an alternative to working with the PBA approach.
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Templex

w time series
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Ves

 Example IV: Unstable AMOC (non autonomous) with interglacial phase

V24

V29

V23

¥3o0

Work in progress with C.
Mosto, G. Chard & J. Ruiz in
collaboration with F. Sévellec
(LOPS, Brest).

Two 1-holes in the BraMAH
complex: one of the 1-holes of the
glacial phase is now covered by the
orange/yellow/green phases.

Va2
V21

Y20

V34

V33

Va2

V31

A fourth stripex
appears, going
through the
interglacial part
of the templex.

The change of
colors in the time
series are related
to the stripexes
being visited.
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 Computing templex from data FACULTAD DE INGENIERIA
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Developing an algorithm to compute
the templex from an embedded time
series.

Defense: February 27t 2024 Desarrollo de algoritmos para el estudio

Tesis de Ingenieria en Informatica

N r L] u r ]
C topologico de flujos caoticos
L SECCION 7. ARQUITECTURA DE LA SOLUCION 56

()

o —1 — — Adrian Matias Barreal
LU Scripts Notebooks Notebooks

L de usuario de usuario demostrativos

Q

(ol
- — 1

()
.-I: Te’::\wlvex

g :

e — J \’—1

g0} Paquetes Dependencias

estandar de externas

E rU Python (numpy, networkx, etc.)
-U  — Figura 7.1: Diagrama de paquetes que describe el contexto en el que el cédigo del paquete “Flow Templex”

O (@] eriste. Los componentes con fondo blanco son los que fueron desarrollados para este trabajo, y los compo-

'Ia_j nentes con fondo gris son elementos externos. Las flechas indican dependencias entre los mdédulos.
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Random Templex

e How s it defined?

UNIVERSITA

-_-_‘"',"‘--— . . . .
S The templex was originally defined to describe the flow on
‘ a static branched manifold in phase space.

[Chekroun et al, 2011] showed that adding multiplicative
noise can cause the structure in phase space to move.

The starting point is now a moving point cloud...

Computing topological invariants
for random attractors

2

moving Random
n-D point-cloud templex
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Random Templex

e How s it defined?

We now have cell complex per snapshot and homologies do not necessarily stay the same all the time. In the sequence
below we show three snapshots, each with a different number of holes.

.. [UNIVERSITA

A0, w) A, w) A(tr, w)
S——_ _ i o P
\,/ Q
9r| (w) 01, (w)

G. D. Charé, M. Ghil and D. Sciamarella: Random templex encodes topological tipping points in noise-driven chaotic dynamics. Chaos: An
Interdisciplinary Journal of Nonlinear Science, 33 (10), pp.103141 (2023)
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Random Templex

e How s it defined?

- |UNIVERSITA

How can we track changes between different cell complexes? Tracking holes!

.’)*'\-:.
16 17
10 9

b

ifs/ls ¢ ¢
b12

saaaaa

7

2

1 1
8

a1
by
b

a
b

a1
v
b

For a random attractor, the digraph does not connect cells, but holes of successive time cell complexes.
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Random Templex

e How s it defined?

&
%)
R~
)
=
4
=)

A random 2-templex R = (K< D) is an indexed family IC . g
of BraMAH 2-complexes and a digraph D. Pappg ol o rm
O\ (€ e
The digraph for LORA can be presented as a tree = -0 -0 -0 -0 -0 -0 -0 -0 i
o .
N plot. It has 15 singly connected components, each of ™
K] which tells the story of one or several holes. - *
H O =0 =0 e, ‘o—m
© Tipping points can be identified and classified using LI{|  « o< 0« 0~ 0~ m -0
T Y}V (. They are highlighted in different colours " -0 >0 >0 -0 -0 -0 -0 -0 -u
o according to the type of event: 0 >0 B0 0 -0 - @
Q O".*o»o»z q"o»o»m
o
1e - creation W i WP
GEJ - destruction o
= - splitting 2 9 .
E m© - merging ,‘8 ,‘g a
- — E . e otz otz Ne-e
T .= - merging - splitting % ™ e
o5 Sle-orm oe-0-m
0 —
S S




Random Templex

* How does it encode topological tipping points?

UNIVERSITA

A better picture of how the holes are evolving in the system’s phase space can be gained by using the coordinates of the
barycenters of the holes for an immersion of D into this space. Each node is immersed in the phase space using the
coordinates of the corresponding hole’s barycenter.

A constellation Cis the set of immersed nodes and
50 - " edges forming a connected componentin the

45 4 a\V digraph D of a random templex.

07 Constellations should lead to the equivalent of a

stripex in a random templex, i.e. to non-equivalent
paths that a nonlinear system follows when it is
driven by multiplicative noise.

35 +

25 +

20

Random stripexes should provide us with the

stretching, folding, squeezing and tearing

20 g -20 mechanisms that knead the topological structure
40 10 of a noise-driven flow.
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Concluding remarks

There is no relationship between the algebraic structure of the equations —7 y
governing a dynamic system and the type of flows they produce. — >% |
t g}

“ N
R
:

. [UNIVERSITA

The mechanismsthat shape a flow are topological in nature and are found in the
full phase space.

* %k %

Classical algebraic topology describes how a structure is built, but it says nothing
about the flow associated with the dynamical system.

A templex is a new mathematical concept describing both structure and flow, as
well as how these fundamental properties may change abruptly, i.e. the
associated topological tipping points.

X %k 3k

The templex approach provides the right way to look at dynamical systems,
whether deterministic or stochastic.

The approach is currently under development in its theoretical, computational
and applied contexts.
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